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CHAPTER 1

API

Description of the functions, classes and modules contained within Surrogate.

Note: mathjs Link: https://www.mathjax.org

Warning: samRandom.py file has not been sphinx doced.

1.1 Base

Base classes for all estimators. Class definition for Individual, the base class for all surrogate models.

1.1.1 SurrogateModel

class surrogate.base.SurrogateModel
A class for surrogate models.
Individual

fit (x,y)
fit ML model

Parameters
e x — training dataset
e y — training dataset

Returns void
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1.1.2 MultiFiSurrogateModel
class surrogate.base.MultiFiSurrogateModel
Base class for surrogate models using multi-fiddelity training data
Parameters SurrogateModel — Object

fit (x,y)
fit ML model

Parameters
* x —training dataset
e y — training dataset

Returns void

1.1.3 Individual

class surrogate.base.Individual (estimator[, variable, constraint, weights])
A Individual

Fitness
Parameters estimator — physical based model
__init__ (estimator, variable=None, constraint=None, weights=())
Parameters
* estimator -
* variable —
* constraint —
* weights —
Returns

__weakref
list of weak references to the object (if defined)

getVar (i)
The fitness is a measure of quality of a solution. If values are provided as a tuple, the fitness is initalized
using those values, otherwise it is empty (or invalid).

Parameters i —index of variable

if not (isinstance(i, int) and i >= 0):
raise ValueError ("Variable index must be an integer >= 0 .")

Note: Note

4 Chapter 1. API
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1.1.4 Fitness

class surrogate.base.Fitness ([values])
The fitness is a measure of quality of a solution. If values are provided as a tuple, the fitness is initalized using
those values, otherwise it is empty (or invalid).

Parameters values — The initial values of the fitness as a tuple, optional.

Fitnesses may be compared using the >, <, >=, <=, ==, !=. The comparison of those operators is made
lexicographically. Maximization and minimization are taken care off by a multiplication between the we i ght s
and the fitness values. The comparison can be made between fitnesses of different size, if the fitnesses are
equal until the extra elements, the longer fitness will be superior to the shorter.

Different types of fitnesses.

Note: When comparing fitness values that are minimized, a > b will return True if a is smaller than b.

__eq__ (other)

x_eq_(y) <==> x==y
__ge___ (other)

X.__ge_ (y) <==>x>=y
__gt__ (other)

X.__ gt (y)<==>x>y
__hash__ ()

hash

Returns

__init__ (values=(), weights=())
X.__init__(...) initializes x; see help(type(x)) for signature

__le _ (other)
x.__le_ (y) <==>x<=y

__1t_ (other)
X.__ 1t (y) <==>x<y

__ne___ (other)
X.__ne__(y) <==>x!l=y

__repr__ ()
Return the Python code to build a copy of the object.

_str__ ()
Return the values of the Fitness object.

__weakref
list of weak references to the object (if defined)

dominates (other, obj=slice(None, None, None))
Return true if each objective of self is not strictly worse than the corresponding objective of other and at
least one objective is strictly better.

Parameters obj — Slice indicating on which objectives the domination is tested. The default
value is slice(None), representing every objectives.

valid
Assess if a fitness is valid or not.

1.1. Base 5
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values
Fitness values. Use directly individual.fitness.values = values in order to set the fitness
and del individual.fitness.values in order to clear (invalidate) the fitness. The (unweighted)
fitness can be directly accessed via individual.fitness.values.

weights = None
The weights are used in the fitness comparison. They are shared among all fitnesses of the same type.
When subclassing Fitness, the weights must be defined as a tuple where each element is associ-
ated to an objective. A negative weight element corresponds to: (-1.0, -1.0) the minimization
of the associated objective. A positive weight element corresponds to: (1.0, 1.0) the
maximization of the associated objective.

Note: If weights is not defined during subclassing, the following error will occur at instantiation of a
subclass fitness object:

TypeError: Can't instantiate abstract <class Fitness[...]> with
abstract attribute weights.

wvalues = ()
Contains the weighted values of the fitness, the multiplication with the weights is made when the values
are set via the property values. Multiplication is made on setting of the values for efficiency.

Generally it is unnecessary to manipulate wvalues as it is an internal attribute of the fitness used in the
comparison operators.

1.2 Crossover

1.2.1 cxOnePoint

surrogate.crossover.cxOnePoint ()
Executes a one point crossover on the input sequence individuals. The two individuals are modified in place.
The resulting individuals will respectively have the length of the other.

Parameters

* varl — The first variable participating in the crossover.

* var2 — The second variable participating in the crossover.
Returns A tuple of two variables.

This function uses the randint () function from the python base random module.

1.2.2 cxTwoPoint

surrogate.crossover.cxTwoPoint ()
Executes a two-point crossover on the input sequence individuals. The two individuals are modified in place
and both keep their original length.

Parameters
* varl — The first variable participating in the crossover.
* var2 — The second variable participating in the crossover.

Returns A tuple of two variables.

6 Chapter 1. API
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This function uses the randint () function from the Python base random module.

1.2.3 cxUniform

surrogate.crossover.cxUniform()
Executes a uniform crossover that modify in place the two sequence individuals. The attributes are swapped
accordingto the indpb probability.

Parameters

* varl — The first variable participating in the crossover.

* var2 — The second variable participating in the crossover.

* prob — Independent probabily for each attribute to be exchanged.
Returns A tuple of two variables.

This function uses the random () function from the python base random module.

1.2.4 cxPartialyMatch

surrogate.crossover.cxPartialyMatch ()
Executes a partially matched crossover (PMX) on the input individuals. The two individuals are modified in
place. This crossover expects sequence individuals of indices, the result for any other type of individuals is
unpredictable.

Parameters

* varl — The first variable participating in the crossover.

* var2 — The second variable participating in the crossover.
Returns A tuple of two variables.

Moreover, this crossover generates two children by matching pairs of values in a certain range of the two parents
and swapping the values of those indexes. For more details see [Goldberg1985].

This function uses the randint () function from the python base random module.

1.2.5 cxUniformPartialMatch

surrogate.crossover.cxUniformPartialMatch ()
Executes a uniform partially matched crossover (UPMX) on the input individuals. The two individuals are
modified in place. This crossover expects sequence individuals of indices, the result for any other type of
individuals is unpredictable.

Parameters

» varl — The first variable participating in the crossover.

* var2 — The second variable participating in the crossover.

* prob - Independent probabily for each attribute to be exchanged.
Returns A tuple of two variables.

Moreover, this crossover generates two children by matching pairs of values chosen at random with a probability
of indpb in the two parents and swapping the values of those indexes. For more details see [Cicirello2000].

This function uses the random () and randint () functions from the python base random module.

1.2. Crossover 7
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1.2.6 cxOrdered

surrogate.crossover.cxOrdered ()
Executes an ordered crossover (OX) on the input individuals. The two individuals are modified in place. This
crossover expects sequence individuals of indices, the result for any other type of individuals is unpredictable.

Parameters

* varl — The first variable participating in the crossover.

» var2 — The second variable participating in the crossover.
Returns A tuple of two variables.

Moreover, this crossover generates holes in the input individuals. A hole is created when an attribute of an
individual is between the two crossover points of the other individual. Then it rotates the element so that all
holes are between the crossover points and fills them with the removed elements in order. For more details see
[Goldberg1989].

This function uses the sample () function from the python base random module.

1.2.7 cxBlend

surrogate.crossover.cxBlend/()
Executes a blend crossover that modify in-place the input individuals. The blend crossover expects sequence
individuals of floating point numbers.

Parameters
* varl — The first variable participating in the crossover.
» var2 — The second variable participating in the crossover.

* alpha - Extent of the interval in which the new values can be drawn for each attribute on
both side of the parents’ attributes.

Returns A tuple of two variables.

This function uses the random () function from the python base random module.

1.2.8 cxSimulatedBinary

surrogate.crossover.cxSimulatedBinary ()
Executes a simulated binary crossover that modify in-place the input individuals. The simulated binary crossover
expects sequence individuals of floating point numbers.

Parameters
» varl — The first variable participating in the crossover.
* var2 — The second variable participating in the crossover.

* eta — Crowding degree of the crossover. A high eta will produce children resembling to
their parents, while a small eta will produce solutions much more different.

Returns A tuple of two variables.

This function uses the random () function from the python base random module.

8 Chapter 1. API
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1.2.9 cxSimulatedBinaryBounded

surrogate.crossover.cxSimulatedBinaryBounded ()

Executes a simulated binary crossover that modify in-place the input individuals. The simulated binary crossover
expects sequence individuals of floating point numbers.

Parameters
* varl — The first variable participating in the crossover.
» var2 — The second variable participating in the crossover.

* eta — Crowding degree of the crossover. A high eta will produce children resembling to
their parents, while a small eta will produce solutions much more different.

* low — A value or a python:sequence of values that is the lower bound of the search space.

* up — A value or a python:sequence of values that is the upper bound of the search space.

Returns A tuple of two variables.

This function uses the random () function from the python base random module.

Note: This implementation is similar to the one implemented in the original NSGA-II C code presented by
Deb.

1.2.10 cxMessyOnePoint

surrogate.crossover.cxMessyOnePoint ()

Executes a one point crossover on sequence individual. The crossover will in most cases change the individuals
size. The two individuals are modified in place.

Parameters
* varl — The first variable participating in the crossover.
» var2 — The second variable participating in the crossover.

Returns A tuple of two variables.

This function uses the randint () function from the python base random module.

1.3 Mutation

1.3.1 mutGaussian

class surrogate.mutation.mutGaussian
This function applies a gaussian mutation of mean mu and standard deviation sigma on the input individual. This

mutation expects a sequence individual composed of real valued attributes. The prob argument is the probability
of each attribute to be mutated.

Parameters
e variable — Decision Variable to be mutated.

* mu — Mean or python:sequence of means for the gaussian addition mutation.

1.3. Mutation 9
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* sigma — Standard deviation or python:sequence of standard deviations for the gaussian
addition mutation.

* prob - Independent probability for each attribute to be mutated.
Returns A tuple of one variable.

This function uses the random () and gauss () functions from the python base random module.

1.3.2 mutPolynomialBounded
class surrogate.mutation.mutPolynomialBounded
Polynomial mutation as implemented in original NSGA-II algorithm in C by Deb.
Parameters
* variable — Sequence Decision Variable to be mutated.

* eta — Crowding degree of the mutation. A high eta will produce a mutant resembling its
parent, while a small eta will produce a solution much more different.

* low — A value or a python:sequence of values that is the lower bound of the search space.
* up — A value or a python:sequence of values that is the upper bound of the search space.

Returns A tuple of one variable.

1.3.3 mutShuffleindexes

class surrogate.mutation.mutShuffleIndexes
Shuffle the attributes of the input individual and return the mutant. The individual is expected to be a sequence.
The prob argument is the probability of each attribute to be moved. Usually this mutation is applied on vector
of indices.

Parameters

* variable — Decision Variable to be mutated.

* prob — Independent probability for each attribute to be exchanged to another position.
Returns A tuple of one variable.

This function uses the random () and randint () functions from the python base random module.

1.3.4 mutFlipBit

class surrogate.mutation.mutFlipBit
Flip the value of the attributes of the input individual and return the mutant. The individual is expected to
be a sequence and the values of the attributes shall stay valid after the not operator is called on them. The
prob argument is the probability of each attribute to be flipped. This mutation is usually applied on boolean
individuals.

Parameters

* variable — Decision Variable to be mutated.

* prob — Independent probability for each attribute to be flipped.
Returns A tuple of one variable.

This function uses the random () function from the python base random module.

10 Chapter 1. API



phd Documentation, Release 1.0.1

1.3.5 mutUniformint

class surrogate.mutation.mutUniformInt
Mutate an individual by replacing attributes, with probability prob, by a integer uniformly drawn between low

and up inclusively.
Parameters
* variable - Sequence Decision Variable to be mutated.

* low — The lower bound or a python:sequence of of lower bounds of the range from wich to
draw the new integer.

* up — The upper bound or a python:sequence of of upper bounds of the range from wich to
draw the new integer.

* prob - Independent probability for each attribute to be mutated.

Returns A tuple of one variable.

1.4 Sampling

Sampling Strategy, Experimental Design

MOEA selection strategy: 1.Random sampling 2.Best sampling 3.Tournament sampling 4.Tournament+Best sam-
pling

Links: https://www.google.nl/search?sclient=psy-ab&client=safari&rls=en&q=github+sampling+python&oq=github+sampling+pytho
ab..0.7.538...33i160k1.G42G3jxX1XY &pbx=1&biw=1680&bih=961&dpr=2&cad=cbv&bvch=u&sei=-
eSHWNLGHsrNgAbDjruoAg#qg=github+sampling+strategy+python

https://en.wikipedia.org/wiki/Sampling_(statistics)
https://en.wikipedia.org/wiki/Latin_hypercube_sampling
https://docs.scipy.org/doc/numpy/reference/routines.random.html

Factorial Designs: samFullFact, samFracFact, samFF2n, samPlackettBurman
Response-Surface Designs: samBoxBehnken, samCentralComposite

Randomized Designs: samLatinHypercube

1.4.1 samBoxBehnken
surrogate.sampling.samBoxBehnken ()
Create a Box-Behnken design
Parameters
* n — The number of factors in the design
* center — The number of center points to include (default = 1).
Returns The design matrix
This code was originally published by the following individuals for use with Scilab:
* Copyright (C) 2012 - 2013 - Michael Baudin
* Copyright (C) 2012 - Maria Christopoulou

1.4. Sampling 11
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* Copyright (C) 2010 - 2011 - INRIA - Michael Baudin
* Copyright (C) 2009 - Yann Collette
* Copyright (C) 2009 - CEA - Jean-Marc Martinez
website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros

Much thanks goes to these individuals. It has been converted to Python by Abraham Lee.

Example

>>> samBoxBehnken (3)

array ([[-1., -1., 0.1,
1., -1., 0.1,
[-1., 1., 0.1,
(1., 1., 0.1,
[-1., O0., -1.],
[ 1., 0., -1.1,
[-1., 0., 1.1,
[ 1., 0., 1.1,
[ o., -1., -1.1,
[ o., 1., -1.1,
[ o., -1., 1.1,
[ o., 1., 1.1,
[ 0., 0., 0.1,
[ 0., 0., 0.7,
[ 0., 0., 0.10)

1.4.2 samCentralComposite
surrogate.sampling.samCentralComposite ()
Central composite design
Parameters
* n — The number of factors in the design.

* center — A 1-by-2 array of integers, the number of center points in each block of the
design. (Default: (4, 4)).

* alpha — A string describing the effect of alpha has on the variance.
alpha can take on the following values:
1. ’orthogonal’ or ‘0’ (Default)
2. ’rotatable’ or ‘r’
* face — The relation between the start points and the corner (factorial) points.
There are three options for this input:

1. ’circumscribed’ or ‘ccc’: This is the original form of the central composite design. The
star points are at some distance alpha from the center, based on the properties desired
for the design. The start points establish new extremes for the low and high settings for all
factors. These designs have circular, spherical, or hyperspherical symmetry and require 5
levels for each factor. Augmenting an existing factorial or resolution V fractional factorial
design with star points can produce this design.

2. ’inscribed’ or ‘cci’: For those situations in which the limits specified for factor settings
are truly limits, the CCI design uses the factors settings as the star points and creates a

12 Chapter 1. API
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factorial or fractional factorial design within those limits (in other words, a CCI design is
a scaled down CCC design with each factor level of the CCC design divided by alpha
to generate the CCI design). This design also requires 5 levels of each factor.

3. ’faced’ or ‘ccf’: In this design, the star points are at the center of each face of the factorial
space, so alpha = 1. This variety requires 3 levels of each factor. Augmenting an
existing factorial or resolution V design with appropriate star points can also produce this
design.

Returns The design matrix with coded levels -1 and 1
This code was originally published by the following individuals for use with Scilab:
* Copyright (C) 2012 - 2013 - Michael Baudin
¢ Copyright (C) 2012 - Maria Christopoulou
e Copyright (C) 2010 - 2011 - INRIA - Michael Baudin
* Copyright (C) 2009 - Yann Collette
e Copyright (C) 2009 - CEA - Jean-Marc Martinez
website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros

Much thanks goes to these individuals. It has been converted to Python by Abraham Lee.

Note:
 Fractional factorial designs are not (yet) available here.
e ‘ccc’ and ‘cci’ can be rotatable design, but ‘ccf’ cannot.

 If face is specified, while alpha is not, then the default value of alpha is ‘orthogonal’.

Example
>>> samCentralComposite (3)
array ([[-1. , —1. , 1. 1,
[ 1. , —1. , —1. 1,
[-1. , 1. , —1. 1,
[ 1. , 1. , —1. 1,
[-1. , —1. , 1. 1,
[ 1. , —1. ’ 1. 1,
[-1. , , 1. 1,
[ 1. , 1 ’ 1. 1,
[ O. , 0 , 0. 1,
[ O. , 0 , 0. 1,
[ O. , 0 , 0. 1,
[ O. , 0 , 0. 1,
[-1.82574186, 0. , 0. 1,
[ 1.82574186, 0. , 0. 1,
[ O. , —1.82574186, O. 1,
[ O. , 1.82574186, 0. 1,
[ O. , 0. , —1.82574186],
[ O. , 0. , 1.82574186],
[ O. , 0. , 0. 1,
[ O. , 0. , 0. 1,
[ O. , 0. , 0. 1,
[ O. , 0. , 0. 11)

1.4. Sampling 13
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1.4.3 samFullFact

surrogate.sampling.samFullFact ()
Create a general full-factorial design

Parameters levels — An array of integers that indicate the number of levels of each input design
factor.

Returns The design matrix with coded levels O to k-1 for a k-level factor
This code was originally published by the following individuals for use with Scilab:
* Copyright (C) 2012 - 2013 - Michael Baudin
Copyright (C) 2012 - Maria Christopoulou
Copyright (C) 2010 - 2011 - INRIA - Michael Baudin
* Copyright (C) 2009 - Yann Collette
* Copyright (C) 2009 - CEA - Jean-Marc Martinez

website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros
Much thanks goes to these individuals. It has been converted to Python by Abraham Lee.

Example

>>> samFullFact ([2, 4, 31)
array ([[ O.

S T T N T T T TS RN

S N N S NS S S S S S ONS OSOS S OSOSONS OSSN S oS oSS
~ 0~ 0~

HOFRORFRORFROROROROROROROR O

WWNONRERPOOWWNNREROOWWNNIERERE OO
N N N S s N S N s s s N N s s s S s s s s s s S
MNNONNOMNVNNNMNNNRRRRRERREREOOOCOOCOOO
o e e e L e e e e L e e e e e e e e e e e e e e

N NN

1.4.4 samlLatinHypercube

surrogate.sampling.samLatinHypercube ()
Generate a latin-hypercube design

Parameters

14 Chapter 1. API
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* n — The number of factors to generate samples for
* samples — The number of samples to generate for each factor (Default: n)

[TPR I3 G

e criterion — Allowable values are “center” or “c”, “maximin” or “m”, “centermaximin’
or “cm”, and “correlation” or “corr”. If no value given, the design is simply randomized.

* iterations — The number of iterations in the maximin and correlations algorithms (De-
fault: 5).

Returns An n-by-samples design matrix that has been normalized so factor values are uniformly
spaced between zero and one.

This code was originally published by the following individuals for use with Scilab:
Copyright (C) 2012 - 2013 - Michael Baudin

Copyright (C) 2012 - Maria Christopoulou

Copyright (C) 2010 - 2011 - INRIA - Michael Baudin

* Copyright (C) 2009 - Yann Collette

L]

* Copyright (C) 2009 - CEA - Jean-Marc Martinez
website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros
Much thanks goes to these individuals. It has been converted to Python by Abraham Lee.
Example

A 3-factor design (defaults to 3 samples):

>>> samLatinHypercube (3)

array ([[ 0.40069325, 0.08118402, 0.69763298],
[ 0.19524568, 0.41383587, 0.29947106],
[ 0.85341601, 0.75460699, 0.360024 11)

A 4-factor design with 6 samples:

>>> samLatinHypercube (4, samples=6)

array ([[ 0.27226812, 0.02811327, 0.62792445, 0.91988196],
[ 0.76945538, 0.43501682, 0.01107457, 0.09583358],
[ 0.45702981, 0.76073773, 0.90245401, 0.187730157,
[ 0.99342115, 0.85814198, 0.16996665, 0.65069309],
[ 0.63092013, 0.22148567, 0.33616859, 0.36332478],
[ 0.05276917, 0.5819198 , 0.67194243, 0.78703262]11])

A 2-factor design with 5 centered samples:

>>> samLatinHypercube (2, samples=5, criterion='center')

array ([[ 0.3, 0.5],
[ 0.7, 0.971,
[ 0.1, 0.37],
[ 0.9, 0.171,
[ 0.5 0.711)

14

A 3-factor design with 4 samples where the minimum distance between all samples has been maximized:

>>> samLatinHypercube (3, samples=4, criterion='maximin')
array ([[ 0.02642564, 0.55576963, 0.50261649],
[ 0.51606589, 0.88933259, 0.34040838],

(continues on next page)

1.4. Sampling 15
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(continued from previous page)

[ 0.98431735, 0.0380364 , 0.01621717],
[ 0.40414671, 0.33339132, 0.84845707]11])

A 4-factor design with 5 samples where the samples are as uncorrelated as possible (within 10 iterations):

>>> samLatinHypercube (4, samples=5, criterion='correlate', iterations=10)

1.4.5 samOptimalLHC

surrogate.sampling.samOptimalLHC ()
Generates an optimized Latin hypercube by optimizing the Morris-Mitchell criterion for a range of exponents
and plots the first two dimensions of the current hypercube throughout the optimization process.

Parameters
* n — number of points required
* Population — number of individuals in the evolutionary operation optimizer
* Tterations — number of generations the evolutionary operation optimizer is run for

Returns X optimized Latin hypercube

Note: high values for the two inputs above will ensure high quality hypercubes, but the search will take longer.
generation - if set to True, the LHC will be generated. If ‘False,” the algorithm will check for an existing plan
before generating.

1.4.6 samPlackettBurman
surrogate.sampling.samPlackettBurman ()
Generate a Plackett-Burman design
Parameters n — The number of factors to create a matrix for.

Returns An orthogonal design matrix with n columns, one for each factor, and the number of rows
being the next multiple of 4 higher than n (e.g., for 1-3 factors there are 4 rows, for 4-7 factors
there are 8 rows, etc.)

This code was originally published by the following individuals for use with Scilab:
* Copyright (C) 2012 - 2013 - Michael Baudin
* Copyright (C) 2012 - Maria Christopoulou

Copyright (C) 2010 - 2011 - INRIA - Michael Baudin

Copyright (C) 2009 - Yann Collette

* Copyright (C) 2009 - CEA - Jean-Marc Martinez

website: forge.scilab.org/index.php/p/scidoe/sourcetree/master/macros
Much thanks goes to these individuals. It has been converted to Python by Abraham Lee.
Example

A 3-factor design:
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>>> samPlackettBurman (3)

array ([[-1., -1., 1.1,
(1., -1., -1.1,
[-1., 1., -1.1,
[ 1., 1., 1.11)

A 5-factor design:

>>> samPlackettBurman (5)
array([[-1., -1., 1., -1., 1.
., 1., -1., -1., -1.
., 1., -1., -1., 1.
- 1., 1., -1., -1.
., —1., 1., 1., -1.
., —1., -1., 1.

- 1., -1., 1., -1.
., 1., 1., 1

~ 0~

~

~

~

e e e e
<

[
[_
[
[7
[
[7
[

o~

1.4.7 samRandom
surrogate.sampling.samRandom ()
samRandom
Parameters n — default 2

Returns

Note: Not sphinx doc!! 20170214 Encoding: utf-8
module numpy.random.mtrand

from /System/Library/Frameworks/Python.framework/Versions/2.7/Extras/lib/python/numpy/random/mtrand.so
by generator 1.138

no doc

Links: https://docs.scipy.org/doc/numpy/reference/routines.random.html

1.4.8 samRandomLHC

surrogate.sampling.samRandomLHC ()
Generates a random latin hypercube within the [0,1]*k hypercube

Parameters
* n — desired number of points
* k — number of design variables (dimensions)
* Edges —if Edges=1 the extreme bins will have their centers on the edges of the domain

Returns Latin hypercube sampling plan of n points in k dimensions

1.4. Sampling 17
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1.5 Selection

1.5.1 seINSGA2

surrogate.selection.selNSGA2 ()
Apply NSGA-II selection operator on the individuals. Usually, the size of individuals will be larger than k
because any individual present in individuals will appear in the returned list at most once. Having the size of
individuals equals to k will have no effect other than sorting the population according to their front rank. The list
returned contains references to the input individuals. For more details on the NSGA-II operator see [Deb2002].

Parameters
* individuals — A list of individuals to select from.
* k — The number of individuals to select.
* nd — Specify the non-dominated algorithm to use: ‘standard’ or ‘log’.

Returns A list of selected individuals.

1.5.2 selSPEA2

surrogate.selection.selSPEA2 ()
Apply SPEA-II selection operator on the individuals. Usually, the size of individuals will be larger than n
because any individual present in individuals will appear in the returned list at most once. Having the size
of individuals equals to n will have no effect other than sorting the population according to a strength Pareto
scheme. The list returned contains references to the input individuals. For more details on the SPEA-II operator
see [Zitzler2001].

Parameters
e individuals — A list of individuals to select from.
¢ k — The number of individuals to select.

Returns A list of selected individuals.

1.5.3 selBest

surrogate.selection.selBest ()
Select the k best individuals among the input individuals. The list returned contains references to the input
individuals.

Parameters
e individuals — A list of individuals to select from.
¢ k — The number of individuals to select.

Returns A list containing the k best individuals.

1.5.4 selDoubleTournament

surrogate.selection.selDoubleTournament ()
Tournament selection which use the size of the individuals in order to discriminate good solutions. This kind
of tournament is obviously useless with fixed-length representation, but has been shown to significantly re-
duce excessive growth of individuals, especially in GP, where it can be used as a bloat control technique (see
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[Luke2002fighting]). This selection operator implements the double tournament technique presented in this
paper.

The core principle is to use a normal tournament selection, but using a special sample function to select aspirants,
which is another tournament based on the size of the individuals. To ensure that the selection pressure is not
too high, the size of the size tournament (the number of candidates evaluated) can be a real number between 1
and 2. In this case, the smaller individual among two will be selected with a probability size_tourn_size/2. For
instance, if size_tourn_size is set to 1.4, then the smaller individual will have a 0.7 probability to be selected.

Note: In GP, it has been shown that this operator produces better results when it is combined with some kind
of a depth limit.

Parameters
e individuals — A list of individuals to select from.
* k — The number of individuals to select.
* fitness_size — The number of individuals participating in each fitness tournament

* parsimony_size — The number of individuals participating in each size tournament.
This value has to be a real number in the range [1,2], see above for details.

e fitness first — Set this to True if the first tournament done should be the fitness one
(i.e. the fitness tournament producing aspirants for the size tournament). Setting it to False
will behaves as the opposite (size tournament feeding fitness tournaments with candidates).
It has been shown that this parameter does not have a significant effect in most cases (see
[Luke2002fighting]).

Returns A list of selected individuals.

1.5.5 selRandom

surrogate.selection.selRandom ()
Select k individuals at random from the input individuals with replacement. The list returned contains references
to the input individuals.

Parameters
* individuals — A list of individuals to select from.
¢ k — The number of individuals to select.

Returns A list of selected individuals.

This function uses the choice () function from the python base random module.

1.5.6 selRoulette

surrogate.selection.selRoulette ()
Select k individuals from the input individuals using k spins of a roulette. The selection is made by looking only
at the first objective of each individual. The list returned contains references to the input individuals.

Parameters
e individuals — A list of individuals to select from.

¢ k — The number of individuals to select.
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Returns A list of selected individuals.

This function uses the random () function from the python base random module.

Warning: The roulette selection by definition cannot be used for minimization or when the fitness can be
smaller or equal to 0.

1.5.7 selStochasticUniversalSampling

surrogate.selection.selStochasticUniversalSampling ()
Select the k individuals among the input individuals. The selection is made by using a single random value to

sample all of the individuals by choosing them at evenly spaced intervals. The list returned contains references
to the input individuals.

Parameters
* individuals — A list of individuals to select from.
* k — The number of individuals to select.

Returns A list of selected individuals.

This function uses the uniform () function from the python base random module.

1.5.8 selTournament

surrogate.selection.selTournament ()

Select k individuals from the input individuals using k tournaments of tournsize individuals. The list returned
contains references to the input individuals.

Parameters

* individuals — A list of individuals to select from.

* k — The number of individuals to select.

* tournsize — The number of individuals participating in each tournament.
Returns A list of selected individuals.

This function uses the choice () function from the python base random module.

1.5.9 selTournamentDCD

surrogate.selection.selTournamentDCD ()
Tournament selection based on dominance (D) between two individuals, if the two individuals do not inter-
dominate the selection is made based on crowding distance (CD). The individuals sequence length has to be
a multiple of 4. Starting from the beginning of the selected individuals, two consecutive individuals will be

different (assuming all individuals in the input list are unique). Each individual from the input list won’t be
selected more than twice.

This selection requires the individuals to have a crowding_dist attribute, which can be set by the
assignCrowdingDist () function.

Parameters

e individuals — A list of individuals to select from.
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¢ k — The number of individuals to select.

Returns A list of selected individuals.

1.5.10 selWorst

surrogate.selection.selWorst ()
Select the k worst individuals among the input individuals. The list returned contains references to the input
individuals.

Parameters
e individuals — A list of individuals to select from.
¢ k — The number of individuals to select.

Returns A list containing the k worst individuals.

1.6 Sorting

1.6.1 sorLogNondominated

surrogate.sorting.sorLogNondominated ()
Sort individuals in pareto non-dominated fronts using the Generalized Reduced Run-Time Complexity Non-
Dominated Sorting Algorithm presented by Fortin et al. (2013).

Parameters individuals — A list of individuals to select from.

Returns A list of Pareto fronts (lists), with the first list being the true Pareto front.

1.6.2 sorNondominated

surrogate.sorting.sorNondominated ()
Sort the first k individuals into different nondomination levels using the “Fast Nondominated Sorting Approach”
proposed by Deb et al., see [Deb2002]. This algorithm has a time complexity of O(M N?), where M is the
number of objectives and N the number of individuals.

Parameters
* individuals — A list of individuals to select from.
* k — The number of individuals to select.
 first_front_only - If True sort only the first front and exit.

Returns A list of Pareto fronts (lists), the first list includes nondominated individuals.

1.6.3 sorNDHelperA

surrogate.sorting.sorNDHelperA ()
Create a non-dominated sorting of S on the first M objectives
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1.6.4 sorNDHelperB

surrogate.sorting.sorNDHelperB ()
Assign front numbers to the solutions in H according to the solutions in L. The solutions in L are assumed
to have correct front numbers and the solutions in H are not compared with each other, as this is supposed to
happen after so-NDHelperB is called.

1.7 Estimator

1.7.1 KrigingSurrogate
1.7.2 NNeighborSurrogate
1.7.3 RSurfaceSurrogate

1.7.4 ANNSurrogate

1.8 Files

Module files

1.8.1 Delft3D
class surrogate.files.Delft3D
Delft3D class
Parameters
* gridFname — delft3D water quality grid file name
* mapFname — delft3D water quality map file name
__init_  (gridFname, mapFname)
Returns

__weakref
list of weak references to the object (if defined)

chkError (i=0, n=0, s="empty’)
Parameters
* i —index of check variable
* n — total amount of check variable
* s —string of check variable
Returns

getWaqgGrid ()
readWaqGrid

Returns

getWagMapDataAtOffset (iseg=0, ivar=0, itime=0)
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Parameters
* iseg-—
* ivar —
e itime -
Returns
getWagMapDataAtSegment (iseg=0)
Parameters iseg-—
Returns
getWagMapDataAtTime (itime=0)
Parameters itime —
Returns
getWagMapDataAtVariable (ivar=0)
Parameters ivar —
Returns
getWagMapDataAtVariableTime (ivar=0, itime=0)
Parameters
* ivar —
e itime -
Returns

initWagMap ()

initiate read Delft3D Water quality model map file. open(‘b’) is important -> binary file.read(1), 8 bits is

1 byte.

Map file structure: [row,column]:

valmap (ntime, self.nseg,nresult)
tempValMap (self.nvar, self.nseg) [self.nvar, self.nseg, 4]
do k=1,ntime

read (mapfID) maptime [1,4]

read (mapfID) ((tempValMap (i, j),i=1,self.nvar), j=1,self.nseq)
do j=1,nresult
valmap (k, :, j) = tempValMap (iseg(j),l:self.nseq)
end do
end do

character (1len=40) : moname (4) [4,40]

integer : self.nvar, self.nseg [1,4]1,1[1,4]

ntime = int (real(fileSize —-4+40 -2%4 —-self.nvar+20) / real (4+4+self.nvar+self.
—nseqg))

character (1len=20) : self.varlist(self.nvar) [self.nvar,20]

Returns fileContent

msgError (icode, message)

1.8. Files
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Parameters

e icode —

¢ message —

Returns

saveFigHis (ivar=0, iseg=0)

Parameters

e ivar —

* iseg -

Returns

saveFigMap (ivar=0, itime=0)

Parameters

e ivar —

e itime —

Returns

1.8.2 jsonMOEA

class surrogate.files.jsonMOEA

jsonMOEA

Parameters

__init__ (fileName, numVar, numPop, numCon, numObj, numGen)

fileName - file name
numVar — Number of Deciison Variables
numPop — Number of Populations

numCon — Number of Constrains

numOb j — Number of Objective Functions

numGen — Number of Generations

Parameters

¢ fileName —
* numVar —
¢ numPop —
* numCon —
* numObj —

* numGen —

Returns

__weakref
list of weak references to the object (if defined)

plot_json|()

24
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Returns
writeEnd ()
Returns
writeHeader ()
Returns
writePareto (individuals, igen)
Parameters
¢ individuals —
* igen—

Returns

1.8.3 decvarMOEA

class surrogate.files.decvarMOEA

__init__ (varDir, casePref, numVar, numPop, numCon, numObj, numGen)
decvarMOEA

Parameters
e varDir —
* casePref - ‘t’ for ‘test’
¢ numVar —
* numPop —
* numCon —
* numObj —
* numGen —
Returns

__ _weakref
list of weak references to the object (if defined)

writeDecVar (variable, ipop)
Parameters
* variable -
* igen -
Returns
writeEnd ()
Returns
writeHeader (igen)

Returns
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CHAPTER 2

Benchmarks

Benchmarks

Single Objective Continuous

Multi Objective Continuous

cigar() fonseca()
plane () kursawe ()
sphere () schaffer _mo ()
rand () dtlzl()
ackley () dtlz2()
bohachevsky () dtlz3()
griewank () dtlz4 ()
hl() zdt1 ()
himmelblau () zdt2 ()
rastrigin() zdt3 ()
rastrigin_scaled() zdt4 ()
rastrigin_skew() zdt6 ()

rosenbrock ()

schaffer ()

schwefel ()

shekel ()

2.1 Continuous Optimization

surrogate.benchmarks.cigar (variable)
Cigar test objective function.

Type minimization

Range none

Global optima | z; =0,Vi € {1...N}, f(x) =0
Function f(x) =22+ 1057 a2
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surrogate.benchmarks.plane (variable)
Plane test objective function.

Type minimization

Range none

Global optima | z; =0,Vie€ {1...N}, f(x) =0
Function f(x) =g

surrogate.benchmarks. sphere (variable)
Sphere test objective function.

Type minimization

Range none

Global optima | z; =0,Vi€ {1...N}, f(x) =0
Function fx) =N a2

surrogate.benchmarks.rand (variable)
Random test objective function.

Type minimization or maximization
Range none

Global optima | none

Function f(x) = random(0, 1)

surrogate.benchmarks.ackley (variable)
Ackley test objective function.

Type

minimization

Range x; € [—15,30]

Global optima | z; =0,Vi € {1... N}, f(x) =0

Function

f(x) =20 —20exp (—0.21 /LS, xf) +e—exp (% SV cos(27rxi))

surrogate.benchmarks.bohachevsky (variable)
Bohachevsky test objective function.

Type minimization

Range x; € [—100,100]

Global optima | z; =0,Vie€ {1...N}, f(x) =0

Function Fx) =N (@2 + 222, — 0.3 cos(3mx;) — 0.4 cos(dmzig1) +0.7)

surrogate.benchmarks.griewank (variable)
Griewank test objective function.

Type minimization

Range x; € [—600, 600]

Global optima | z; =0,Vi € {1...N}, f(x) =0

Function F0) = g oy @2 — [ cos () +1

28
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20.0
17.5
15.0
12.5
10.0

600
500
400

300
200
100
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surrogate.benchmarks.hl (variable)

Simple two-dimensional function containing several local maxima. From: The Merits of a Parallel Genetic

Algorithm in Solving Hard Optimization Problems, A. J. Knoek van Soest and L. J. R. Richard Casius, J.
Biomech. Eng. 125, 141 (2003)

Type maximization
Range x; € [—100,100]
Global optima | x = (8.6998,6.7665), f(x) = 2
. o sin(w1 — 22 )% +sin(ze+ 5 )°
Function flx) = /(€1 —8.6998)% + (w2 —6.7665)2 +1

surrogate.benchmarks.himmelblau (variable)

30 Chapter 2. Benchmarks



phd Documentation, Release 1.0.1

The Himmelblau’s function is multimodal with 4 defined minimums in [—6, 6]°.

Type minimization

Range € [-6,6]

Global optima = (3.0,2.0), f(x1) =0

= (—2.805118,3.131312), f(x2) = 0
X3 _( 3.779310, —3.283186), f(x3) = 0
x4 = (3.584428, —1.848126), f(x4) =0

Function F(@1,02) = (@2 + 22 — 112 + (z1 + 22 — 7)2

surrogate.benchmarks.rastrigin (variable)
Rastrigin test objective function.

2000

1750
1500
1250
1000
750
500
250

Type minimization

Range x; € [—5.12,5.12]

Global optima =0,Vie{l.. N} f(x) =
Function f( ) = 10N ZZ L 22 —10 cos(27r:1c )

surrogate.benchmarks.rastrigin_scaled (variable)
Scaled Rastrigin test objective function.

_ N (+=2) ) 2 (=%
fRastScaled(x) = 10N+Zi=1 (10 N-1 2171) LL’Z) — 10 cos (27’(’10 N-1

surrogate.benchmarks.rastrigin_skew (variable)
Skewed Rastrigin test objective function.

SRastskew (X) = 10N Zf\;1 (yl2 - 10 cos(27rxi))

. 10-2; ifx; >0,
with y; = .
T; otherwise

surrogate.benchmarks.rosenbrock (variable)
Rosenbrock test objective function.

s,)

2.1. Continuous Optimization
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Type minimization

Range none

Global optima | z; =1,Vie {1...N}, f(x) =0

Function f(x) = ZfV:Il(l —2;)% +100(z;41 — 22)?

surrogate.benchmarks.schaffer (variable)
Schaffer test objective function.

32
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Type minimization

Range x; € [—100,100]

Global optima | z; =0,Vi € {1...N}, f(x) =0

Function f(x) =300 (@2 +22,,)0% - [sin?(50 - (22 + 22,,)%10) + 1.0]

surrogate.benchmarks.schwefel (variable)
Schwefel test objective function.

Type minimization

Range x; € [—500,500]

Global optima | x; = 420.96874636,Vi € {1... N}, f(x) =0

Function f(x) = 418.9828872724339 - N — "N | =, sin ( |xi|)

surrogate.benchmarks.shekel (variable, a, c)
The Shekel multimodal function can have any number of maxima. The number of maxima is given by the length
of any of the arguments a or ¢, a is a matrix of size M x N, where M is the number of maxima and N the number
of dimensions and ¢ is a M x 1 vector. The matrix .4 can be seen as the position of the maxima and the vector
¢, the width of the maxima.

M
Ssnerer (%) = 32524 cito] r

=1(xj_aij)2

The following figure uses

0.5 0.5 0.002
0.25 0.25 0.005
A= 10.25 0.75| and c = [0.005], thus defining 5 maximums in R2.
0.75 0.25 0.005
0.75 0.75 0.005
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2.2 Multi-objective

surrogate.benchmarks. fonseca (variable)
Fonseca and Fleming’s multiobjective function. From: C. M. Fonseca and P. J. Fleming, “Multiobjective opti-

mization and multiple constraint handling with evolutionary algorithms — Part II: Application example”, IEEE
Transactions on Systems, Man and Cybernetics, 1998.

-3 132
fFonsecal(X) =1-—e€ i (@i \/g)

-3 412
fFonseca2(X) =1-—e€ i@ +\/§)

surrogate.benchmarks.kursawe (variable)
Kursawe multiobjective function.

Jiursawe1 (X) = ZZJ\;II —10e 02V ol +a7

fKursaweQ(X) = le\il |xi|0'8 + E)sin(x3)

i

surrogate.benchmarks.schaffer mo (variable)
Schaffer’s multiobjective function on a one attribute variable. From: J. D. Schaffer, “Multiple objective op-

timization with vector evaluated genetic algorithms”, in Proceedings of the First International Conference on
Genetic Algorithms, 1987.

fSchafferl (X) = x%
[schafter2(x) = (21 — 2)?

surrogate.benchmarks.dtlzl (variable, obj)
DTLZ1 mutliobjective function. It returns a tuple of obj values. The variable must have at least obj elements.

From: K. Deb, L. Thiele, M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems.
CEC 2002, p. 825 - 830, IEEE Press, 2002.

9(Xm) =100 (|xpn| + 2, cx,. ((xi —0.5)% — cos(207(x; — 0.5))))
(14 g(xn)) IS

JorLzin(x) = 5
Joriziz(x) = £ (1 + g(xm)) (1 — 1) H?if Zi

JotLzim-1(x) = %(1 + 9(xm)) (1 — z2)71
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forzim(x) = 3(1 — z1)(1 + g(xm))

Where m is the number of objectives and x,,, is a vector of the remaining attributes [x,,, ... z,] of the variable
in n > m dimensions.

surrogate.benchmarks.dtlz2 (variable, obj)
DTLZ2 mutliobjective function. It returns a tuple of obj values. The variable must have at least obj elements.
From: K. Deb, L. Thiele, M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems.
CEC 2002, p. 825 - 830, IEEE Press, 2002.

9(Xm) = ine,(m (z; — 0.5)2
foriza1(x) = (14 g(xm)) [T1 " cos(0.5;)
forzae(x) = (14 g(x)) sin(0.5,,_17) [17 > cos(0.52;7)

forizam (x) = (1 4 g(X4)) sin(0.5z17)

Where m is the number of objectives and x,,, is a vector of the remaining attributes [z, ... x,] of the variable
in n > m dimensions.

surrogate.benchmarks.dtlz3 (variable, obj)
DTLZ3 mutliobjective function. It returns a tuple of obj values. The variable must have at least obj elements.
From: K. Deb, L. Thiele, M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems.
CEC 2002, p. 825 - 830, IEEE Press, 2002.

9(Xm) = 100 (x| + D iex,, ((w; — 0.5)% — cos(20m(z; — 0.5))))
foriza1(x) = (1 + g(xm)) [T15 " cos(0.5;)
IorLzz2(x) = (1 + g(xy,)) sin(0.52,,_17) HZ}Q cos(0.5z;)

fDTLZ3m(X) = (1 + g(Xm>) sin(0.5:z:17r)

Where m is the number of objectives and x,,, is a vector of the remaining attributes [z, ... x,] of the variable
in n > m dimensions.

surrogate.benchmarks.dtlz4 (variable, obj, alpha)
DTLZA4 mutliobjective function. It returns a tuple of obj values. The variable must have at least obj elements.
The alpha parameter allows for a meta-variable mapping in dt1z2 () x; — x, the authors suggest o = 100.
From: K. Deb, L. Thiele, M. Laumanns and E. Zitzler. Scalable Multi-Objective Optimization Test Problems.
CEC 2002, p. 825 - 830, IEEE Press, 2002.

g(X’m) = ZIiEX,n (in - 05)2
forrzar (x) = (14 g(xm)) [T " cos(0.5z5)
forzaz(x) = (14 g(xp)) sin(0.522,_7) [T7> cos(0.528 )

fDTLZ4m(X) = (1 + g(Xm)) SIH(O5.T?7T)

Where m is the number of objectives and x,,, is a vector of the remaining attributes [z, ... x,] of the variable
in n > m dimensions.

surrogate.benchmarks.zdtl (variable)
ZDT1 multiobjective function.

g(x) =1+ % Z?:z Ti
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fzor (%) = 1

Jzpri2(%) = g(x) {1 - gf)lt)]

surrogate.benchmarks.zdt2 (variable)
ZDT2 multiobjective function.

g(x) =1+ % Z?:z i
fZDTzl(X) =1

fzpr22(x) = g(x) [1 - (9?)1))2}

surrogate.benchmarks.zdt3 (variable)
ZDT3 multiobjective function.

g(x) =1+ % D i T

fzora (%) = a1

fzora2(x) = g(x) {1 — gfj() — q?;) sin(lOmcl)]

surrogate.benchmarks.zdt4 (variable)
ZDT4 multiobjective function.

g(x)=14+10(n—1)+ > 1, [:c? —10 cos(47rxi)]
fZDT41(X) =T
foria(x) = 9(x) [1 = /a1 /g(x)]

surrogate.benchmarks.zdt6 (variable)
ZDT6 multiobjective function.

9(x) =1+ 90, 2) /(n— 1)
fzpre1(x) = 1 — exp(—4a1) sin6(67r:r1)

Japre2(x) = g(x) [1 — (fzpre1 (x)/9(x))?]

2.2. Multi-objective
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Indices and tables

* genindex
* modindex

e search
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